Integral equation methods for vesicle electrohydrodynamics in three dimensions
نویسنده
چکیده
In this paper, we develop a new boundary integral equation formulation that describes the coupled electroand hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.
منابع مشابه
Parameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملElectrohydrodynamics of Three-Dimensional Vesicles: A Numerical Approach
A three-dimensional numerical model of vesicle electrohydrodynamics in the presence of DC electric fields is presented. The vesicle membrane is modeled as a thin capacitive interface through the use of a semi-implicit, gradient-augmented level set jet scheme. The enclosed volume and surface area are conserved both locally and globally by a new Navier–Stokes projection method. The electric field...
متن کاملA simple algorithm for solving the Volterra integral equation featuring a weakly singular kernel
There are many methods for numerical solutions of integral equations. In various branches of science and engineering, chemistry and biology, and physics applications integral equation is provided by many other authors. In this paper, a simple numerical method using a fuzzy, for the numerical solution of the integral equation with the weak singular kernel is provided. Finally, by providing three...
متن کاملLeast squares weighted residual method for finding the elastic stress fields in rectangular plates under uniaxial parabolically distributed edge loads
In this work, the least squares weighted residual method is used to solve the two-dimensional (2D) elasticity problem of a rectangular plate of in-plane dimensions 2a 2b subjected to parabolic edge tensile loads applied at the two edges x = a. The problem is expressed using Beltrami–Michell stress formulation. Airy’s stress function method is applied to the stress compatibility equation, and th...
متن کاملNumerical quasilinearization scheme for the integral equation form of the Blasius equation
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 326 شماره
صفحات -
تاریخ انتشار 2016